Remarkable Positive Nonlinear Effect in the Enantioselective Glyoxylate-Ene Reaction Catalysed by a Chiral Titanium Complex

Masahiro Terada, Koichi Mikami" and Takeshi Nakai"

Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

The enantioselective glyoxylate-ene reaction catalysed by chiral titanium complex derived from partially resolved BINOL is found to exhibit a remarkable level of asymmetric amplification, wherein tne optical yield of the product significantly exceeds the enantiomeric purity of the chiral auxiliary employed.

Recently the so-called nonlinear effect (NLE) has been observed in the epoxidation of geraniol promoted by chiral titanium complex' and the addition of diethylzinc to benzaldehyde catalysed by β -aminoalcohols,² wherein the optical yield of the products significantly exceeds the enantiomeric purity of the chiral auxiliaries employed.3 Oguni has referred to such phenomenon as 'asymmetric amplification',^{2a} which is of mechanistic interest and synthetic value. We now wish to disclose a remarkable asymmetric amplification (positive NLE) in enantioselective glyoxylate-ene reaction catalysed by the chiral titanium complex (Scheme 1).

In previous papers,⁴ we have reported the remarkable levels of enantioselection (>90% ee) in the glyoxylate-ene reaction catalysed by the chiral titanium complexes 1 prepared *in situ* from diisopropoxytitanium dihalide $(X = Cl or Br)$ and optically pure binaphthol (BINOL) in the presence of molecular sieves 4 Å . We have now found that a similar use of chiral catalyst **1a** $(X = Br)$ prepared from a partially resolved (R) -BINOL of 33.0% ee, for instance, provides the ene product **4** with 91.4% ee in 92% chemical yield.? Fig. 1 shows remarkable levels of positive NLE observed with both the dibromo la and dichloro lb catalysts, indicating that the use of BINOL of 35-40% ee provides the same level of % ee as previously observed with enantiomerically pure BINOL.4

In view of the dinuclear chelate structure of diphenoxytitanium dichloride *,5* it appears likely that the remarkable NLE is a result of a marked difference in the catalytic activity between the diastereomeric dimers $(R)(R)-1_2(A)$ and $(R)(S)-1_2(B)$ (Fig. 2). \ddagger In fact, simple kinetic studies reveal that the

Scheme 1 *Reagents and conditions:* **i**, $(\text{Pr}^{\text{i}}\text{O})_{2}\text{TiBr}_{2}/\text{BINOL}$ (33.0% ce) $(1.0 \text{ mol\%}$ each); ii, MS 4 Å, CH₂Cl₂, -30[°]C

⁺**A** similar level of positive NLE was observed in the use of methylenecyclohexane instead of α -methylstylene 3.

\$ These 3-D representations were rendered with the Machintosh program CHEM-3D⁺. Bond lengths/angles of the $Ti₂O₂$ four-membered ring and titanium binaphthoxide framework were based on the X-ray crystal analysis of a similar type of diphenoxytitanium dichloride (ref. *5)* and diisopropoxytitanium binaphthoxide, which was generously presented by Professor Sharpless.

catalytic activity of the complex derived from 100% ee of BINOL was at least 30 times greater than that of the complex derived from racemic BINOL. It, therefore, appears that the catalyst thus formed from racemic BINOL is not a racemic mixture of $(R)(R)-1_2$ and $(S)(S)-1_2$, but the *meso*-dimer $(R)(S)-1$ ₂ **(B)** which is less reactive and more stable *(vide infra)* .

The dimeric structure of the BINOL-derived complex was proven by the ebullioscopic molecular weight measurement in dichloromethane. Both the hetero- and homo-chiral titanium complexes 1b, prepared from BINOL dilithium salt and $TiCl₄$, were found to exist in the dimeric form M_w obs. *ca.* 800, calcd. 806 for $(C_{20}H_{12}O_2TiCl_2)_2$. However, the M_w of $(R)(R)$ -1b₂, prepared *in situ* from diisopropoxytitanium di-

Table 1 Effect of catalyst molar ratio on positive NLE in the reaction of cu-methylstyrene **3** and methyl glyoxylate **2** catalysed by **1b** $(31.0\% \text{ee})^d$

Mol%b.c	(mM)	% Ee	% Yield	
	(1.7)	87.6	97	
	(8.4)	83.9	93	
10	(17)	81.3	99	
20	(34)	80.6	96	
100	(170)	74.9	88	

All reactions were carried out in a constant concentration; methyl glyoxylate $2(1.0 \text{ mmol})$ and α -methylstyrene $3(2.0 \text{ mmol})$ in CH_2Cl_2 (5.5 ml) . $\frac{b}{(PrO)_2}$ TiCl₂/BINOL (31.0% ee) was used as a chiral catalyst. ϵ Mol% was defined on the basis of 2.

Fig. 1 Positive NLE in asymmetric catalytic glyoxylate-ene reaction

Fig. 2 3-D representation of **(A)** and **(B)**

chloride and optically pure BINOL in the presence of molecular sieves 4 Å , was concentration-dependent, ranging from 864 [calcd. 866 for $(C_{20}H_{12}O_2TiCl_2)_2Pr^iOH$]§ in 37 mm solution to 762 (9.2 mm solution), suggesting that in dilute solutions the homochiral dimer dissociates to the monomeric form to some extent. By contrast, the M_w of the *meso*-dimer $(R)(S)$ -1b₂ is not concentration-dependent, 872 (37 mm) and 874 (9.2 mm), indicating the stability of the *meso*-dimer. Furthermore, the level of asymmetric amplification was found to significantly increase with a decrease in the molar ratio of the catalyst with a given optical purity of BINOL (31.0% ee) to the constant concentration of glyoxylate and α -methylstylene. \llbracket This finding suggests that the monomeric species is responsible for the enantioselective catalysis (Table 1).

We thank Professor K. B. Sharpless in MIT for sending the

*^Q*lH NMR analysis of the titanium complex, lb, indicates the presence of 0.5 equiv. of Pr'OH.

7 In the diethylzinc/benzaldehyde reaction, however, Noyori *et al.* have reported that the level of NLE increases with increasing the molar ratio of the chiral catalyst (β -aminoalcohol) (ref. 2b).

X-ray crystal analysis data of diisopropoxytitanium binaphthoxide. This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture, Japan and the Asahi-Kasei Award in Synthetic Organic Chemistry, Japan.

Received, *20th July* 1990; Com. *0103273E*

References

- 1 C. Puchot, 0. Samuel, E. Dunach, **S.** Zhao, C. Agami and H. B. Kagan, *J. Am. Chem.* **SOC.,** 1986, **108,** 2353. *cf.* The stoichiometric use of chiral titanium complex bearing partially resolved tartaratederived chiral auxiliary (25% ee) has been reported by Narasaka *et al.* to give the Diels-Alder product in 83% ee; N. Iwasawa. Y. Hayashi. H. Sakurai and K. Narasaka, *Chem. Lett.,* 1989, 1581.
- *2 (u)* N. Oguni, Y. Matsuda and T. Kaneko, *J. Am. Chem. SOC.,* 1988, 110, 7877; *(b)* M. Kitamura, **S.** Okada, **S.** Suga and R. Noyori, *J. Am. Chem. SOC.,* 1989, **111,** 4028.
- 3 Review: H. Wynberg, *Chirnia,* 1989, **11,** 150.
- 4 K. Mikami, M. Terada and T. Nakai, *J. Am. Chem. SOC.,* 1989,111, 1940; 1990, 112, 3949.
- *5* K. Watenpaugh and C. N. Caughlan, *Inorg. Chem.,* 1966, *5,* 1782.